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The efficacy of perturbation approaches for short-long wave interactions is examined 
by considering a simple case of two interacting wave trains with different 
wavelengths. Frequency-domain solutions are derived up to third order in wave 
steepness using two different formulations : one employing conventional wave-mode 
functions only, and the other introducing a modulated wave-mode representation for 
the short-wavelength wave. For long-wavelength wave steepness and short-to-long 
wavelength ratio s1 and E, respectively, the two results are shown to be identical for 
s1 + E, < 0.5. As s1 approaches c,, the conventional wave-mode approach converges 
slowly and eventually diverges for el 9 6,. The loss of convergence is because the 
linear phase of conventional wave-mode functions is ineffective for modelling the 
modulated phase of the short wave. As expected, this difficulty can be removed by 
using a modulated wave-mode function for the short wave. On the other hand, for 
relatively large s3 - O( l) ,  the conventional wave-mode approach converges rapidly 
while the slowly varying interaction between the two waves cannot be accurately 
predicted by the present modulated wave-mode approach. These findings have 
important implications to (time-domain) numerical simulations of the nonlinear 
evolution of ocean wave fields, and suggest that a hybrid wave model employing both 
conventional (for large-s, interactions) and modulated (for small-s, interactions) 
wave-mode functions should be particularly effective. 

1. Introduction 
Conventional frequency-domain perturbation approaches have been successfully 

and widely used to solve a variety of nonlinear wave dynamic problems, such as 
short- and long-wave interactions (Longuet-Higgins & Stewart 1960) and nonlinear 
wave energy transfer (Hasselmann 1962). In  these perturbation approaches, the 
potential in the free-surface boundary conditions is expanded about the calm water 
level ( z  = 0). When such an approach is used for interacting waves with disparate 
wavelength scales, however, a convergence difficulty may be encountered as noted by 
Holliday (1977). He thought that the difficulty was due to the expansion about 
z = 0 but his arguments did not find universal acceptance. In a response to criticisms 
that high-order mode-coupling numerical schemes were incapable of describing the 
interaction between long and short waves. Brueckner & West (1988) argued that 
even though the expansion of the potential about a reference surface (say, z = 0) 
diverges when truncated a t  finite order, the boundary conditions at the free surface 
are still well behaved. They showed that the divergent terms (resulting from the 
expansion about x = 0) cancel in the free-surface boundary conditions for two waves 
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separated in scale. Furthermore, they suggest that even conventional frequency- 
domain perturbations may be free of convergence difficulty. 

I n  this paper, we revisit this controversy to  investigate the effects of wavelength 
ratio on the convergence of conventional frequency-domain perturbations. We 
confirm that the convergence difficulty in the perturbation is independent of the 
expansion about the calm water level. However, we also find that slow convergence 
may result from nonlinear terms, such as the velocity product of waves with 
disparate wavelength scales in the free-surface dynamic condition. This difficulty can 
be eliminated if the modulation of short-wave phases is properly modelled. 

Conventional wave-mode functions assume that the wavenumber and phase of 
each wave mode can be modelled by a constant and a linear function, respectively 
(for example a el(kz-ut) and A e(kz+l(kz-ut)) respectively for the elevation and velocity 
potential of a two-dimensional wave in deep water). When short and long waves 
interact with each other, the characteristics of the short waves are modulated by the 
presence of long waves. Specifically, a short wave riding on a long wave becomes 
shorter in wavelength and larger in amplitude at  the crest of the long wave, and 
longer and smaller a t  the trough of the long wave. Since conventional wave-mode 
functions do not explicitly account for such modulations, the changes in the short- 
wave wavelength and amplitude along the long wave must be implicitly described, 
for example by second-order wave-mode functions (Longuet-Higgins & Stewart 
1960). When the solution is truncated at finite order, rapid convergence is possible 
only if the wavelength ratio of short to  long wave ( E ~ )  is relatively large. When this 
ratio is smaller than the long-wave steepness (el), the second-order solution 
describing the short-wave modulation is greater than the leading-order short-wave 
solution, which causes convergence difficulty. 

Recently, an innovative perturbation approach was developed by Phillips (1981) 
and Longuet-Higgins (1987) for investigating a linear short wave riding on a much 
longer wave. This approach was extended by Zhang & Melville (1990) to study the 
evolution of weakly nonlinear narrowband short gravity waves riding on a finite- 
amplitude periodic long wave. The key difference between this latter approach and 
conventional perturbation is in the modelling of the short waves. Instead of 
conventional wave-mode functions, the short waves are described by modulated 
wave-mode functions, which define the ‘calm’ water level of the short waves a t  the 
(undisturbed) surface of the long wave. More importantly, the modulation of the 
short-wave phases is now expressed explicitly. It is shown that, when e3 6 el, the 
modulated short-wave phase can differ significantly (of O(el e i l ) )  from its average 
phase, that is the linear phase in the corresponding conventional wave-mode 
function. This large difference in phase is fimnd to be responsible for the convergence 
difficulty in conventional perturbation approaches. 

In this paper. the interaction between two waves with different wavelengths is 
studied as a simple example for general short-long wave interactions. Two different 
frequency-domain perturbation approaches are presented and compared : one using 
conventional wave-mode functions exclusively, and the other using a modulated 
wave-mode function for the short wave. The governing equations for the two 
approaches are given in $2. Solutions up to third order in wave steepness derived by 
the tao approaches are given respectively in $3  and $4. In $5, their solutions are 
compared and shown to be consistent. For different values of e3, however, the rates 
of convergence of the two approaches are quite different and reveal the main reason 
for the convergence difficulty in the conventional approach. The implications of this 
finding for niode-coupling numerical schemes are explored. 
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2. Formulation 
We consider two-dimensional weakly nonlinear gravity wave trains with different 

wavelengths but propagating in the same direction in deep water. It is assumed that 
the flow is incompressible and irrotational and that the pressure is constant at  the 
free surface. The rectilinear coordinates (x,z) are fixed in space with the x-axis 
pointing in the direction of wave propagation and z = 0 is located at  the calm water 
level. The governing equations in the (x, z )  coordinates are 

V"@+$) = 0, (2.1) 

V@+O and V++O when Z C - C O ,  (2.4) 

where @, q5 and 7,[ are respectively the wave potentials and elevations of the long 
and short waves. 

We introduce the orthogonal curvilinear coordinates (s, n) (see Zhang & Melville 
1990) which are related to the rectilinear coordinates (x' = x+Ct, x )  moving at the 
long-wave phase velocity, ICJ, through the conformal mapping, defined by 

s = @'/C, n = !PIC, (2.5) 

where @' and !P are the potential and stream function of the long wave in the moving 
coordinates, and hence are steady. The conformal mapping projects the horizontal 
and vertical lines in the (s, n)-plane onto the streamlines and equipotentials of the 
long wave in the (x', 2)-plane, and in particular, n = 0 coincides with the long-wave 
surface (see figure 1) .  The transformations between (s, n) and (x, z )  are given by 

x + Ct = s +a, eKn sinKs + E ,  a, e2Kn sin 2Ks + O(e:) a,, (2.6a) 

z = n-~s ,a ,+a,eK"cosKs+s ,a ,e2K~cos~Ks+O(e~)a , ,  (2.6b) 

(2.7a) 

(2.7b) 

s = x+ Ct -a, eKz sin @+ O(F:) al,  

n = x+;aa, el -a, eKz cos 0 + O(et) a,. 
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FIGURE 2. Sketch of the short-wave elevation defined in the (x', 2)- and (s, n)-planes. 

For n = 0, s = x+ Ct -a, sin 8 +a, el sin 2 0  + O ( E ~ )  a,. ( 2 . 7 ~ )  

Here a,, K ,  Q, and 0 = Kx-Qt are respectively the amplitude, wavenumber, 
frequency and phase of the long wave. The small parameters el, c2 and e3 representing 
the long- and short-wave steepnesses respectively and the wavelength ratio of short. 
to long wave are defined by 

E ,  = a, K ,  c2 = a2 k ,  c3 = K / k ,  (2.8) 

where a2 and k are the average amplitude and wavenumber of the short wave. 
The corresponding governing equations in ( s ,  n) coordinates are 

+gy+gfcosa!=C,  at n = t ,  (2.10) 

(2.11) 

U-tC ,  a$/an+O as n-t-co, (2.12) 

(2.13) 

where 6 and denote the short-wave elevations measured in the (s ,  n) and (x', x) 
coordinates, respectively. As shown in figure 2, is measured normal to the long- 
wave surface and hence is different from g. Here a is the local slope of the long-wave 
surface, U the velocity induced by the long wave in the moving coordinates (x', x), C,, 
the Bernoulli constant, and H the scale factor between the coordinates ( ~ , n )  and 
(x', 2) : 

(2.14) 



Effects of wavelength ratio on wave modelling 111 

The derivations of the governing equations in the (8, n)-plane and (2.14) are outlined 
in Appendix A. 

3. Solution by the conventional perturbation approach 
Since conventional wave-mode potential functions satisfy the Laplace equation 

and the bottom boundary condition, only the free-surface boundary conditions need 
to be further imposed. Longuet-Higgins & Stewart (1960) gave a typical conventional 
perturbation approach and derived the solution up to second order in wave 
steepness. Following them, we extend the solution to third order. For brevity, detail 
derivations are omitted. 

The leading-order solutions for the long and short waves are: 

@(l) = A ,  eKz sin 0, qJ1) = a, cos 0, 

$(l) = A ,  elez sin 8, Q1) = a2 cos 8, 

(3.la,  b )  

(3.2a, b )  

where 8 = k x - d + p ;  a, = A,L?/g; a2 = A,a/g,  (3.3 a-c) 

and 13 is the short-wave phase. A ,  and A ,  are the potential amplitudes of the long and 
short waves, and u the average frequency of the short wave. Without the loss of 
generality, the initial phases of the long and short waves have been set to zero and 
@ respectively. 

The second-order solution is given by 

@(,) + qV2) = -a, M, e(k-K)r sin (e - O), (3.4) 

r(z) + c(2) = $x; K cos 2 0  +$xi k cos 28 + el a2 cos 0 cos e - el eil  a, sin 0 sin 8. (3.5) 

In addition to the second harmonics of the long- and short-wave elevations, the 
second-order result contains wave-wave interaction terms. When K 4 k (that is 
e3 4 l ) ,  they describe the modulation of the short wave by the long wave. Combining 
them with the leading-order short-wave solution, the modulation of the short wave 
along the long wave can be explicitly described by 

(3.6) 

(3.7) 

6 = A e E ( z - P )  sin 8, 
6 = cz, cos 8, 
* 

wherea",=a2(l+e,cos0), 8=8+ka,sin@, and Ic"=i38/i3x=k(i+e1cos0). 
The modulation of the short-wave elevation was first quantified by Longuet- 

Higgins & Stewart (1960), and later confirmed by a direct model of the short-wave 
modulation at the long-wave surface (Phillips 1981). The modulation of the potential 
amplitude is negligible in comparison with the elevation amplitude owing to the 
cancellation between the modulation of the elevation amplitude and the change in 
the gravitational acceleration field in the presence of the long wave. Although the 
changes of the modulated wavenumber and elevation amplitude with respect to their 
average values are O(e,),  the change of the modulated phase is O(E, e;'). When this 
is greater than unity, it is shown that the explicit description of the modulation 
cannot be obtained through (3.1)-(3.5). 

The magnitude ratio of the second-order solution to the leading-order short-wave 
solution is O ( a , k ) ,  which is the same as that of the phase modulation. This 
coincidence is by no means accidental, as we will show. If the solution is truncated 
at  second order, for convergence, we require that el 4 E ~ .  
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The average frequencies of the short and long waves up to third order are given by 

c2 = gk[  1 + a; k2 + 2 4  KkQ/a] ,  

5 2 2  = gK[1 +a;K2+2a;KkQ/cT]. 

The second terms in the brackets of both equations are due to the nonlinearity of the 
wave itself, while the third terms result from the presence of the other wave. 
Equations (3 .8)  and (3.9) are in agreement with Longuet-Higgins & Phillips (1962) 
and describe the average absolute frequencies instead of intrinsic frequencies. 

The third-order potential is given by 

(3.10a) 

[1-2e3 if k > 2K, 

~(R/a)(2~~-1)(2--3Q/n)/(l--Q/0-)~ i fk  < 2K. 
where T,  = (3.10 b )  

When e3 + 1 ,  the last term in (3 .10a)  is dominant. For convergence, we require 
el 4 2e3. In  our later comparison with the solution from the modulated wave-mode 
approach, we will show that the ratio of two consecutive orders of the solution is 
approximately (el ei1)/(m- l ) ,  where m is the perturbation order. 

The third-order elevation is given by 

7(3) + c(3) = - K 2  cos 0 +$at K 2  cos 3 0  - $a; k2 cos 8 + &; k2 cos 314 

+a,a;Kk($e,-Q/cr) cos 0 + a : a 2  k2[e , (&-Q/a ) -a ]  cosB 

+ a ,  aiKk(&, +:+ T,) cos 0 cos ~ B - u ,  a: k2( 1 -+, - E ,  q) sin 0 sin 28 

+ u; a2 k 2 q  cos 2 0  cos 8 +a: a2 k g q  sin 2 0  sin B, (3 .1 la )  
where 

sz 5 ( s z / a ) 2  1 (52/a)3 if k > 2 K ,  ’’ = { F [ ! e 3 + e g + T ,  if k < 2K, T,  = 2 - + -  0- 2 (1  -Q/a) +z ( 1  -52/a)2 
( 3 . l l b ,  c )  

(3 .1 ld ,  e) 

The first four terms in (3.11 a )  show the first and third harmonics of the short and 
long waves, respectively. The fifth term gives the changes of the long-wave elevation 
due to the presence of the short wave and the remaining terms describe the 
modulation of the short-wave elevation by the long wave. When c3 4 1 ,  the third- 
order elevation is dominated by 

1 / 1 ( 3 )  + Q3) z -+a: a2 k2 sin2 0 cos 8. (3.12) 

Thus, the requirement for the convergence of the wave elevation is the same as that 
for (3.10a), i.e. el + 2e3. 

One may disagree with the criteria of convergence used herein and argue that while 
the second-order solution may be larger than the leading-order short wave, it is 
always smaller than the leading-order long wave, and hence the perturbation may be 
considered convergent when truncated a t  finite order. The reason why the 
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FIGURE 3. The second-order (- - - -) and third-order (---) solutions for the wave elevation given 
by (3.5) and (3.1 1 a ) ,  respectively, are compared with the leading-order short-wave elevation 
(-), for el = 0.1, e2 = 0.1 and eQ = 0.1. 

0 0.2 0.4 0.6 0.8 1 .o 
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FIGURE 4. The second-order (- - - -) and third-order (---) solutions for the vertical velocity based 
on (3.5) and (3.10a), respectively, are compared with the leading-order short-wave vertical velocity 
(-), for the same e,, eZ and e3 as figure 3. 

comparisons are made with the leading-order short wave instead of the long wave is 
elaborated below. 

When K 4 12, the wavenumbers and frequencies of the dominant second- and third- 
order (interaction) terms are close to those of the short wave, and the high-order 
solutions behave like the short-wave solution. This is demonstrated clearly in figures 
3 and 4 for el = 0.1, c2 = 0.1 and c3 = 0.1, where the leading-order short-wave 
elevation and vertical velocity (at  the long-wave surface) are compared with those of 
the second- and third-order solutions respectively. Thus, the high-order solutions 
modify essentially the short wave rather than the long wave, as depicted in 
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FIGURE 5. The resultant wave elevations of a long wave (up to the third-order) and a short wave 
up to the leading order (---), the second order ( - - - - )  and the third order (---) are compared 
with that obtained by the modulated wave-mode approach (-), for the same el, e2 as figure 3. 
For reference, the undisturbed long-wave surface (-) up to the third order is also plotted. 
Taking advantage of the symmetry, we only show the resultant wave elevation along a half long 
wavelength. 

0 0.1 0.2 0.3 0.4 0.5 
Kx/2rc 

FIGURE 6. The resultant vertical velocities of a long wave and a short wave up to the leading order 
(---), the second order ( - - - - )  and the third order (---) are compared with that obtained by the 
modulated wave-mode approach (-), for the same el, ep as figure 3. For reference, the 
undisturbed long-wave vertical velocity (-) up to the third order is also plotted. Taking 
advantage of the antisymmetry, we only show the resultant vertical velocity along a half long 
wavelength. 

figures 5 and 6. The corresponding results using the modulated wave-mode approach 
are also plotted in these figures as asymptotes of the conventional perturbation 
solution when truncated a t  very high orders m (that is when ( ~ J e ~ ) ( ~ - ~ ) / ( m - -  I)  ! < I). 
It is seen that the curves that include up to third-order terms approach the 
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FIGURE 7. Same as figure 5, except el = 0.2. 

FIGURE 8. Same as figure 0, except e3 = 0.05. 

asymptotes, while those that include up to the second-order solutions are in fact 
farther away from the asymptotes than the leading-order solutions. This indicates 
the divergence of the solution when truncated at  second order. When increases, 
the solution may fail to converge even if truncated at relatively higher order. This 
trend is observed in figures 7 and 8, where the resultant wave elevation for larger 
long-wave steepness (el = 0.2) and the resultant vertical velocity for smaller 
wavelength ratio (e3 = 0.05) are displayed respectively. The differences between the 
curves that include up to the third-order solution and asymptotes are significantly 
greater than those shown in figures 5 and 6, which indicates that the solution does 
not converge if truncated at  the third order. 

It is also important to show that the convergence difficulty is not caused by the 
expansion at z = 0. To demonstrate this, we revisit the two-wave interaction 
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problem using the two-dimensional Zakharov equation, which applies at the free 
surface : 

(3.13b) 

where the superscript S denotes the value defined at the free surface, and W the 
vertical velocity. Following a similar perturbation approach as above except that no 
expansion about z = 0 is performed, we obtain the solution for the potential and 
wave elevation (W can be determined from the surface potential and elevation 
following Watson & West 1975, and West 1981). Up to the second order, it is given 
by 

0- 
( 3 . 1 4 ~ )  (@ + $)@)(I) = -a, sin 0 +--a, sin 8, 

(7 +<)(I) = a, cos 0 + a,  cos 8, (3.14b) 

(@ + q5)(‘)(’) = :Qa: sin 2 0  t-iaa; sin 28+ (D + a)  a, a2 sin 0 cos 8, (3.15a) 

(7 + C)(2) = +a:Kcos 26++ai k cos 28 +a, a2 K cos 0 cos 0 -a1 a2 k sin Osin 0. 
(3.15 b)  

Although the leading-order solution for the potential is deliberately chosen not to 
involve the large exponential factor erc(s+o, the solution up to the second order is still 
identical to that given in (3.1)-(3.5). Hence, the convergence difficulty is not related 
to the expansion of the free-surface boundary condition at z = 0. 

52 
K k 

4. Solution by the modulated wave-mode approach 
The influence of the short wave on the long wave is expected to be of third order 

at most, and is much smaller than the influence of the long wave on the short wave 
when e3 $ 1. Therefore, changes in the long wave due to the short wave and the 
modulation of the short wave by the long wave can be calculated separately at  least 
up to  third order in wave steepness. Expanding (2.10) and (2.11) about n = 0, and 
then subtracting the steady solution for the long wave, we derive the expanded 
boundary conditions (4.1) and (4.2), which together with (2.9), (2.12) constitute the 
governing equations for the modulated short wave : 

$4 +Hi w s  +915+ ($4 +Hi W s ) n  t+HX9;  + $9 ++(A +e C A ) n n  c2 

5, +Hi 

+&Hi(@+q5~)nt = O ( s ; , , ) A ; c  at n = 0, (4.1) 

-Hi A +H&4 0, +Hex aH0 c (5”,,-2H0H”5A ++HMsn  t”), an 

= O(s:,,)aia at n = 0, (4.2) 

where 
gcosa i3Ho 

an 
H , = H ( s , O ) ,  %=HI , g,=- +Ho-C2. (4.3 u-c) 

an an n=o HO 

In the above, g, denotes the effective gravitational acceleration divided by H,, and 
A; and a; the amplitudes of the short-wave potential and elevation respectively. A ;  
and a; are slightly different from their counterparts A ,  and a2, as will be shown in $5. 



Effects of wavelength ratio on wave modelling 117 

The subscripts t ,  s and n denote derivatives with respect to them. The notation 
O(E!, 2)  represent the cubic products of el, e2 or their combinations. In  expanding the 
free-surface boundary conditions about n = 0, it  is assumed that the long-wave 
velocity field can be analytically extended into the region between the short-wave 
crests and the long-wave surface. 

The solution up to the third order was derived by Zhang & Melville (1990) and 
Zhang (1991) using perturbation and variational principle approaches, respectively. 
In these derivations, the instability of the short wave was considered and e3 was 
limited to be -4 1 .  In  the present study, we relax the requirement that e3 e 1 and 
focus on the steady solution of the modulated short wave. Using standard 
perturbation procedures, the solutions for the short and long waves are derived. 
Again, the details are omitted for brevity. 

The first-harmonic potential and elevation of the short wave up to third order are 
given by 

= A : , e ~ n s i n 8 ' + 9 + O ( E ~ , 2 ) A ~ ,  (4.4) 

p = a; cos 8' - 3-43 le'2 cos 8' + O( E?, a;, (4.5) 

where 8' is the phase of the short wave in the ( s , n )  coordinates, 

and le', w ,  gI are respectively the wavenumber, absolute frequency (in the moving 
coordinates) and intrinsic frequency of the short wave. Equation (4.8) describes the 
nonlinear dispersion relation. The amplitudes of the potential and elevation are 
related by 

The solution given in (4.4)-(4.9) is similar in form to that of Stokes waves except for 
an extra term 9 in (4.4). Since the short-wave wavenumber k' varies slowly with s ,  
the leading-order potential alone satisfies the Laplace equation only to leading order, 
and the higher-order correction term 9 must be included in order to satisfy the 
Laplace equation exactly. The derivation of 9 is given in Appendix B. 

The second-harmonic potential and elevation of the short wave are given by (see 
Appendix C):  

= AS, uI/gl. (4.9) 

(4.10) 

(4.11) 

With the exception of the first term on the right-hand side of (4.11), the remaining 
solution represents the modulation of the short wave by the long wave. 

The third harmonic of the short wave is given by 

(4.12) 

(4.13) 

and terms resulting from wave interaction are of higher order. 
Since the solution of an undisturbed long wave is well known, we need only to show 

the modification of the long wave due to the presence of the short wave. The forcing 
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term having the long-wave phase in the free-surface dynamic boundary conditions 
(4.1) is (dHi/an) (&$/as) CE, which decreases the long-wave elevation by (see Zhang & 
Melville 1990, Appendix A),  

(4.14) 

The decrease in the long-wave elevation induces the forcing term in the kinematic 
boundary condition (4.2)) that is H i  C(a[(o)/i3s). Combining the two surface boundary 
conditions, the effect of the two forcing terms on the long-wave frequency is given 

(4.15) 

where A’” represents the nonlinear contribution from the long wave itself. Using (5.2) 
and (2.7a-c), we obtain the nonlinear dispersion relation for the long wave in the 
presence of the short wave: 

Q2 = gK(1+a:K2+2(SZ/a)atkK). (4.16) 

The primes on a2 and k and the subscript I of r are dropped here because the 
differences are of higher order. The increase in the long-wave frequency is identical 
to that derived in $3. Correspondingly, the coordinates (x’, z )  move at the increased 
long-wave phase velocity. Nevertheless, this increase in the long-wave phase velocity 
does not affect the short-wave solution at least up to the third order. 

5. Conversion and comparison 
5.1. Conversion 

For comparison, it is useful to convert the solution derived using the modulated 
wave-mode approach in $4 in terms of conventional wave-mode functions and in the 
rectilinear coordinates (x, 2 ) .  The equations for converting the short-wave charac- 
teristics are given first. Substituting ( 2 . 6 ~ )  and (2.6b) into (2.14), the scale factor 
is calculated : 

H = (1  +2c,eKncosKs+~~e2Kn+4s~e2Kncos2Ks)-~+O(s~). (5.1) 

A t n = 0 ,  (5.2) 

A t  the interaction of the long-wave surface and the calm water level H ,  = 1 .  
According to (4.3c), the relative change of g, along the long wave is of O(E!). 

Furthermore, using the dispersion relation (4.8) and applying phase conservation to 
(4.7), the relative change of the intrinsic frequency was found to be of O(e:,,) 
(Zhang & Melville 1992). Therefore, both can be approximated by constants : 

H ,  = (1  + 2s1 cos Ks + e: + 4 4  cos 2Ks)-i. 

g, = (l+€~+O(E;))g.  

g1 = [glCh( 1 + €: + €31; + O ( q  2) rl, 
(5.3) 

(5.4) 

where kh is the short wavenumber at the intersection of the long-wave surface 
and the calm water level. Differentiating (4.8) with respect to s and noticing 
(l/gl)i&/& = O(E;) and (2/0,)aa1/8s = O(&) based on (5.3) and (5.4), we obtain a 
simple relation between E‘ and H;, 

(5 .5)  
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k' = kh( 1 + 2s1 cosKs + E: + 4 4  cos ~ K s )  + O(s:, Jch. 

119 

and solve if for k' ; 

(5.6) 
Although E' is different from its counterparts in the (z',x)-plane, the average of k' 
(with respect to s) is equal to the average wavenumber in the (x,z)-plane, since the 
long wavelength and the number of short-wave crests or troughs within one long 
wavelength remain unchanged during the conformal mapping. Hence, 

k;( 1 + e,") = k, (5.7) 
which indicates that the short wavelength at the interaction of the long-wave surface 
and the calm water level (where H,  = 1) is slightly longer than the average 
wavelength. Substituting (5.7) into (5.4), the intrinsic frequency up to  the second 
order is found to be 

Comparing (5.8) with (3.8) gives the difference between vI and the average frequency 
cr, which is due to the convection by the long-wave particle velocity. The convectional 
effect on the short-wave frequency can also be recovered through the modulated 
wave-mode approach, as shown in Appendix D. 

The short-wave phase is calculated as the integral of k' in s and --o in time: 

CT; = gk(1 + u p ) .  (5.8) 

19' = kA[( 1 + e:) s+ 2a1 sinKs + 2~~ a,  sin 2Ks] --wt+/3, (5.9) 

k ~ ( l + s ~ ) s - o t + / ? =  8-ka,eKzsin O+O(s; )ka , .  (5.10) 

where /3 is the initial phase. With the help of ( m a ) ,  (4.7), (3.8) and (5.7), we note that 

Thus 8' is related to 6 as given below which shows that the fluctuation of the 
modulated phase with respect to the average phase is O(a, k )  : 

8' = 8 + a l k ( 2 - e K Z ) s i n ~ + s l a l k ( 2 - e K Z ) s i n 2 0 + O ( s , " ) u l k .  (5.11) 

There are two ways to project the wave elevation from the ( s ,  n)- to the (5, 2)-plane. 
The first is to map the elevation &(s , t )  onto q(x, t )+f l (z , t )  directly, using the 
transform function (2.7 u-c). This is straightforward but involves a cumbersome 
computation. The second method calculates the increment between the resultant 
wave elevation and the long-wave elevation in the (x, z)-plane based on E(s, t ) .  The 
resultant wave elevation is then determined by adding the increment to the 
undisturbed long-wave elevation. The two methods yield identical results. For 
clarity, only the conversion using the latter method is given here. 

As depicted in figure 2, the points (8, [) and (s,O) project onto (2, ~ ( z ,  t )  +C(z, t ) )  and 
(zo, ~(s,, t ) )  respectively in the (z, 2)-plane. The increment between the two points in 
the (s,z)-plane is calculated using the expansion of ( 2 . 7 ~ )  and (2.7b) about n = 0: 

Az = E( 1 +el COSKS + 2e: cos 2Ks+;el KE COSKS) + O(e:, ,) 6, (5.12b) 

where (is  the sum of ((l), [(2), (@) and ((O), which are given by (4.5), (4.1 l ) ,  (4.13) and 
(4.14), respectively. Since 6 is derived for n = 0, the coordinate 2 in the phase of 5 is 
substituted by the long-wave elevation : 

&=, = 8+a, ksin 0 +&x1 Ice, sin20+ O(ef) a, k. (5.13) 

The conversion of the modulated wave-mode functions to interaction wave-mode 
functions is accomplished by expanding the sinusoidal functions of the phase 
difference in Taylor series : 

cos 8' = cos 6( 1 --$: k2 sin2 0 + . . .) -sin @(a, k sin 0 - . . .). (5.14) 

Ax = 5(~~sinKs+2~:sin2Ks+~~,K(sinKs)+O(s~, , ) ( ,  (5.12a) 
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When el > e3, the phase difference can be greater than unity, and hence the 
truncation of the expansion series at  finite order m may not converge unless 
(a, k)(m-l ) / (m- l ) !  < 1 .  In fact, the comparison of (5.14) with (3.5) and (3.12) shows 
that the dominant divergent terms in the conventional approach are the same as 
those from the phase expansion of the leading-order short-wave elevation. The 
coincidence reveals the source of the divergent terms in the solution of the 
conventional approach. Substituting (5.2) and (5.14) into (4.5), (4.11), (4.13) and 
(4.14), can be obtained. Further substituting ( 2 . 7 ~ )  into (5.12a), we may express Ax 
and Ax in terms of (x, x). As shown in figure 2, the resultant wave elevation is equal 
to the sum of the undisturbed long-wave elevation (7(x0,t)) and Ax. Since the 
horizontal coordinate of the resultant elevation is moved by Ax due to the tilt of the 
long-wave surface, we accordingly translate the coordinate in the solution. Finally, 
we separate the resultant wave elevation into the long- and short-wave elevations by 
recognizing their phases : 

~ ( x ,  t )  = a,( 1 -ga,2K2 - (Q/a) ai2 kK+$ai2K2) cos 0 +taf K cos 2 0  +ia:K2 cos 3 0 ,  
(5.15) 

{(x, t )  = a;[( 1 -&: k2 -+k2 k2 + E : )  + el cos 0 + (iu? k2 + e:) cos 201 cos 0 

-a; a, k(sin 0 + 6,  sin 2 0 )  sin B 

During this conversion, we find that all possibly divergent terms involve the 
product a, k ,  and originate from the expansion of the difference between a modulated 
and an average phase. The same situation is also observed in the conversion of the 
potential. 

The conversion of the leading-order short-wave potential is similar to that of the 
wave elevation, and el 6 e3 is also required for the truncation to be valid. Details of 
the #(l) conversion are in Appendix E. The final results are 

#(l) = A;[(  1 -+zl a, k )  ekz sin 6- a, k e(k-K)z sin (8- 0) 
+(hi k2-el a, k )  e(k-2K)sin (B-2@)] + O(a: k3)  A; .  (5.17) 

Since the second-harmonic potential is of O(e;, 2)A; ,  its conversion is accomplished 
simply by substituting the variables and wave characteristics in the (x, 2)-plane 
for their counterparts in (4.10); the differences due to the substitution are at  most 

(5.18) 

The long-wave potential is the same as a single Stokes wave except for the 
increased frequency due to the presence of the short wave: 

Q, = A ,  eKzsin 0, 

5.2. Comparison 
where a, = A ,  Q/g. 

(5.19) 

For the same long- and short-wave conditions, the solutions derived by the two 
different approaches should be identical provided they both converge. To have the 
same wave condition in the two approaches, we may either let the potential be the 
same and then compare the wave elevation based on the potential, or vice versa. 
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Comparing ( 3 . 1 ~ )  with (5.19) and (3.9) with (4.16), we see that the solutions for the 
long-wave potential by the two approaches are indeed identical, which justifies the 
use of identical notions for the long wave in both approaches. Comparisons of (3.2a),  
(3.4) and ( 3 . 1 0 ~ )  with (5.17) and (5.18), however, show two discrepancies between 
the solutions for the short-wave potential. The modulated wave-mode approach fails 
to recover part of the third-order potential for k < 2K, which is present in the 
conventional wave-mode solution ( 3 . 1 0 ~ ) .  The missing solution is due to the 
assumption that k 9 K in the modulated wave-mode approach. The inclusion of the 
long-wave second harmonic in the short-wave modulation implies that k > 2K which 
excludes the case k < 2K and the related solution. We anticipate that the condition 
k > mK, is required in the modulated wave-mode approach when effects of the mth 
long-wave harmonic are considered in the short-wave modulation, or more generally, 
in order for it to be accurate up to O ( e y ) .  This points out the limitation of the 
modulated wave-mode approach for waves with close wavelength scales. 

The two solutions are otherwise identical with the exception of an extra third- 
order term, -14; el a, k ekz sin 8, in (5.17). Thus, for the same short-wave potential 
amplitude, we let 

A;( 1 -;el a1 I % )  = A, .  (5.20) 

Comparison of (5.15) with (3.lb), (3.5) and ( 3 . 1 1 ~ )  shows that the solutions for the 
long-wave elevation by the two approaches are identical. The last two terms on the 
right-hand side of (5.15) show the change in the long-wave elevation due to the 
presence of the short wave. 

Allowing for differences between A ,  and A;,  CT and C T ~ ,  and g, in ( 3 . 3 ~ )  and (4.9), we 
determine the relation between a; and a z :  

a; = a , ( l+;€ la l k - (SZ /a )€ la , k -€~) .  (5.21) 

Since the difference between them are of third order, we may substitute a2 for a; in 
(5.16) and the changes due to this substitution come only from the leading-order 
term. As expected, the two short-wave solutions are identical for the case k > 2K: 

g = a,[ 1 - $2: k2 - s; + el a, k(4 - Q/g) + B1 cos 0 + ($a? k2 + e!) cos 201 cos 0 

+ a: k[a + el($ + 
+a, a: k2[  - 1 + e3($ + T,)] sin 0 sin 28, 

+$e3) cos 01 cos 28 - a2 a, k(sin 0 + el sin 2 0 )  sin 8 

(5.22) 

where T, is given in (3.11b). 

6. Conclusion and implications for numerical simulation of wave-wave 
interactions 

The comparison between the solutions derived by two different approaches is not 
only helpful to check computation, but more importantly, displays the differences in 
the convergence between the two approaches and the reasons for these differences: 

(i) For 6, < 4 and el < B,, both solutions converge rapidly and are identical a t  least 
up to O(e7, 2 ) .  Furthermore, if the computation in both approaches is carried out to 
an order high enough, their solutions will be identical and converge even if el % e,, 
provided that the solution for the individual waves converges. 

(ii) When el 9 e,, the modulated wave-mode solution converges rapidly, a t  a rate 
depending on O(el, J .  On the other hand, the conventional wave-mode solution 
converges very slowly, a t  a rate of O ( e ~ ~ - l ) / ( e ~ ~ - l ) ( m - l ) ! ) ) ,  where m is the 
perturbation order. Hence, the convergence in the conventional approach can be 
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reached only when m 9 e1/c3. I n  other words, it may diverge if truncated a t  finite 
order. This convergence difficulty results from the modelling of a modulated short- 
wave phase by a linear phase function and all possibly divergent terms originate from 
the phase difference. 

(iii) When c3 is relatively large, that is $ el, the convergence in the conventional 
perturbation is reached quickly, at a rate depending on On the other hand, 
for e, - O( l), part of the solution describing slowly varying wave interaction cannot 
be accurately predicted by using the modulated wave-mode approach. 

The above conclusions have immediate implications for direct time-domain 
numerical simulations (for example Dommermuth & Yue 1987; West, Brueckner & 
Janda 1987) of nonlinear wave-wave interactions for general wavefields. Such 
methods are typically based on the Zakharov equation (Zakharov 1968; Crawford 
et al. 1981) and mode-coupling ideas (for example Phillips 1960; Benney 1962; West, 
Watson & Thomson 1974; Cohen, Watson & West 1976), but are generalized to 
include interactions among a large number of conventional wave-modes and to 
relatively high order in wave steepness. The key step in these calculations is the 
determination of the vertical velocity a t  the free surface given its position and the 
surface potential. 

Following Brueckner & West (1988), we examine the convergence of the vertical 
velocity a t  the surface for a given short-long wave pair with potential 

(#+d)(S)  = (Q/K)a,sin@+ (g/k)a2sin8, (6.1) 

on x = a, cos 0 +a, cos 8. As in Watson & West (1975) and West (1981), the leading- 
and second-order vertical velocities can be calculated : 

WS) (l) = a, SZ sin 0 + a, F sin 8, (6.2) 
@s)(2)  = -$el alSZsin20-~~,a,asin28-e1(Q/a)azrrsin (0-0) 

- el a2 u sin 0 cos 0 - (9/cr) a, ka, rr sin 0 cos 8. (6.3) 

It should be noted that the free-surface boundary conditions are not directly 
involved in the computation of WS) and hence the results here are different from those 
based on ( 3 . 1 4 ~ )  and ( 3 . 1 5 ~ ) .  Regardless of the relation between el and c3, all terms 
in W(’)@) are second order except for the last term. This term has a magnitude which 
can be comparable to or greater than that of the corresponding leading-order short- 
wave vertical velocity, a,a, when O(et) is comparable to or greater than O(e3).  
Fortunately, this apparent divergence does not present itself a t  higher orders. For 
example, a t  third-order, the corresponding dominant terms in W(s)(3)  are of O(e,) or 
O(s2) which are smaller than those a t  second order. A similar result was also reached 
by using a surface-wave Hamiltonian (Milder 1990). The presence of this large 
second-order term is likely a root cause of poor numerical performance of existing 
simulations involving shortAong waves using conventional wave-mode functions. It 
is important to note finally that this large term in the surface vertical velocity when 
ci - e3 does not appear in the modulated wave-mode approach. 

As a result of this study, a new time-domain hybrid mode-coupling computation 
scheme is now under development. In this scheme, conventional wave-mode 
functions are used to model interactions among waves of comparable wavelengths, 
while modulated wave-mode functions are used to describe short- and long-wave 
interactions. The computational advantage of this hybrid wave-mode approach for 
the simulation of a realistic wave field is being explored and will be reported in the 
future. 
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Appendix A. Derivation of governing equations and scale factor 

By the definition of the scale factors, 

A.1. *Scale factor 

H,(s,  n) = ds/ds’, H,(s, n)  = dn/dn’, (A 1)  

where ds, dn, ds’ and dn‘ are respectively the increments in the (s, n)-coordinates and 
their projections in the (x’,z)-plane (see figure 1). Using the definition of the 
conformal mapping and the relationship between the flow rate and the stream 
function, 

dn = -d!P’/lCl = U(x’, z )  dn’/C, 

and similarly, the relationship between the potential function and the velocity, 

ds = - d@’/lCl = U(X’, 2) ds’/C, 

we obtain 

Using the relation of the conformal mapping we finally obtain (2.14). 

H = H ,  = H ,  = U ( x ’ , z ) / C .  (A 2) 

A.2. Governing equations in the (s, n)-plane 

The governing equations in the (s,n)-plane may be obtained either directly or by 
transforming their counterparts in the (x’, z)-plane. Both approaches yield identical 
results. For simplicity, we show the derivation of the governing equations through 
transformation except for the free-surface kinematic boundary condition. 

For incompressible flows, 

where a$/as’+ U and a#/an’ are velocities in the direction of streamlines and 
equipotentials, respectively. Using (A 1 )  and (A 2), (A 3) reduces to  (2.9). I n  the 
moving coordinates (x’, z ) ,  the long wave is steady. Also noting that 

+ C(x, 0 = rl(x,) + C ( x 0 )  cos a,  (A 4) 
(2.2) can be transformed to  obtain (2.10) and (2.13). The transformation for (2.12) is 
trivial. 

To derive the kinematic boundary condition, we map the velocity in the (x’, 2)- to 
the (8, %)-plane. Since the conformal mapping is time independent, the relationship 
for the velocity is 

~ ( s ,  n) = H((a$/as’) + U )  = H 2  a$/as + HU, 

W(8 ,  n) = H a$/ad = H 2  a$/&. 
(A 5) 

(A 6) 

w(s, n) = (a</at) + (at/&) u(s,  n) at n = <(s, t ) .  (A 7) 

Applying the material derivative to the free surface in the (s,n)-plane, we have 

With (A 5) and (A 6), (A 7 )  reduces to (2.11). 
5-2 
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Appendix B. Derivation of 9 in (4.4) 
Using complex form, setting A ;  = 1 for simplicity and noticing that 

then 

According to (5.6), the first three terms in the brackets of (B 1) are of O ( E ~ ) ~ ' ~  
and the last term of O(ef )k2 .  This indicates that  the Laplacian of ek'n+i@' is of 
O(EJ  k2 ek'+i8'. 

Consider the expansion of L? with respect to cl, Y = xFl q, where the subscript 
j denotes the order in el. .L$ can be obtained sequentially for j = 1,2, . . . from 

If L? is truncated at j = 2, the omitted terms are of O ( B : ) ~ ~ ' ~ + ~ ~ .  For relatively 
small e3, the solution may be reduced to 

+ -n4 i a 3 k  - cos 0' ekn -inn" (-) a k  2 cos 8' ek"}, (B 6) 
4! as3 as 

which is consistent with Zhang (1991). 

Appendix C. Solution of the short-wave second harmonic 

be derived from (4.1) and (4.2): 
The boundary conditions a t  n = 0 for the second harmonic of the short wave can 

4i2) +Hi C4!2) + 96'2) = p(z), (C 1) 
(C 2) 512) + H i  c,C:z) - H2 4 ( 2 )  = Q ( 2 ) ,  

o n  

where Pea) and Q(2) denote the forcing terms resulting from the first harmonic: 

(C 3) 
a 

P@) = - - (qp + H i  C@) p -@l;($yZ + @p*) + O(S?, A ;  al, an 

Using (4.4)-(4.9), (5.2) and (5 .5) ,  they reduce to 

P(') = &I;' k'g, cos 20' - (Q/a1) el u;' kg, cos (20' - Ks),  (C 5 )  

(C 6) 

Q ( 2 )  = a;' k'm, sin 28' + (Q/a,) el a;' k f a I  cos Ks sin 28' - el aL2 Ka, sin (28' -Ks). 
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The derivation of t,he second-harmonic solution involves an additional per- 
turbation in terms of E; and is very lengthy. The solution up to O(+, 2) is given by 

Noting that O/a, < 1 and making use of the geometry series, we simplify (C 7) and 
(C 8) to (4.10) and (4.11), respectively. It is clear that the potential (4.10) satisfies the 
Laplace equation (up to the third order) and the bottom boundary condition. Using 
(5.5), CK = -Q and K/L' = (Q/aI)2, we may also show that (4.10) and (4.11) satisfy 
(C 1) and (C 2). 

1 

When 8% is small ( -  O ( < ) ) ,  (C 7)  and (C 8) can be truncated and reduce to 

q5(') = ;(Q/a,) el al, PA', eZvn sin (26' -Ks), 

[(2) = gap k' cos 28+ 2(Q/aI) ui2 k' cos (20' -Ks), 
(C 9) 

(C 10) 

Appendix D. Average short-wave frequency through the modulated wave- 
mode approach 

moving coordinates : 
It takes time to for the short wave to sweep backward one long wavelength in the 

-2n/K ds' 

to = lo ( U +  a,/k') 

Using (A l ) ,  (A Z ) ,  (5.5) and (5.2), we have 

The advance of the short wave in the fixed coordinates is given by 

x0 = ( Q / K )  to - 2n/K. 

% / t o  = (CI/k) + 4 Q / K )  + o(E:, 2 )  a1lk 

(D 3) 

(D 4) 

Hence, the average phase velocity of the short wave is 

and its average frequency is a = a,+a: kKQ which is identical to (3.8). 

Appendix E. Conversion of the short-wave potential 

Dirichlet boundary-value problem formulated by : 
The direct conversion of Y in (4.4) is cumbersome. To avoid this, we impose a 
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The lateral boundary condition (E Id)  requires that the short wavenumber be 
modulated periodically along the long wave. The Dirichlet problem is formulated so 
that $(l) in (4.4) satisfies it. Since the solution to  the Dirichlet problem must be 
unique, we seek an alternative form of the solution which is easier to convert. Let 

03 

$ =Ah C B,el'"'mKI"sin(8;+mKs), (E 2) 
m=o 

where 0; = k i ( l  +a:) s+/3 = k s + P .  Equation (E 2) satisfies the Laplace equation, 
bottom and lateral boundary conditions. The surface boundary condition, (E l b ) ,  is 
used to determine the coefficients B, : 

B, = 1-atk2 ,  B,, = +a,k, B,,  = & z ~ k 2 + E 1 a , k ,  B,, = O(a;k3) .  

To ensure agreement between the original solution #l) and (E 2) truncated a t  
m = 2, the truncation error must be small, that is 4 e3. As for the conversion of the 
wave elevation, this truncation error results from the phase difference. 

Substituting (2.6a) and (2 .6b )  into (E 2), we may transform (s, n) in the potential 
to (x, z )  and derive (5.17). Again el << c3 is required for the validity of the truncation. 
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